[FOX-Ebook]Cleaning Data for Effective Data Science: Doing the other 80% of the work with Pytho...

[FOX-Ebook]Cleaning Data for Effective Data Science: Doing the other 80% of the work with Python, R, and command-line tools
¥34.99 市场价 ¥899.99
库存
9999
数量
-
+
联系卖家   QQ:316821785   微信:zbook8_com  电话:13111111111   
商品特色:担保交易手动发货商品,工作人员手动发货。

自动发货宝贝:购买后直接到我买到的商品-订单详情-收货信息获取下载链接。
手动发货宝贝:购买后请留言邮箱或联系方式,0-4小时内由工作人员发到您邮箱。
购买后任何问题请联系商家或直接联系本站站务微信或者QQ。
书籍格式:
isbn:
排版:
新旧程度:

-------如果这里没有任何信息,不是真没有,是我们懒!请复制书名上amazon搜索书籍信息。-------

A comprehensive guide for data scientists to master effective data cleaning tools and techniques

Key Features

  • Master data cleaning techniques in a language-agnostic manner
  • Learn from intriguing hands-on examples from numerous domains, such as biology, weather data, demographics, physics, time series, and image processing
  • Work with detailed, commented, well-tested code samples in Python and R

Book Description

It is something of a truism in data science, data analysis, or machine learning that most of the effort needed to achieve your actual purpose lies in cleaning your data. Written in David’s signature friendly and humorous style, this book discusses in detail the essential steps performed in every production data science or data analysis pipeline and prepares you for data visualization and modeling results.

The book dives into the practical application of tools and techniques needed for data ingestion, anomaly detection, value imputation, and feature engineering. It also offers long-form exercises at the end of each chapter to practice the skills acquired.

You will begin by looking at data ingestion of data formats such as JSON, CSV, SQL RDBMSes, HDF5, NoSQL databases, files in image formats, and binary serialized data structures. Further, the book provides numerous example data sets and data files, which are available for download and independent exploration.

Moving on from formats, you will impute missing values, detect unreliable data and statistical anomalies, and generate synthetic features that are necessary for successful data analysis and visualization goals.

By the end of this book, you will have acquired a firm understanding of the data cleaning process necessary to perform real-world data science and machine learning tasks.

What you will learn

  • Identify problem data pertaining to individual data points
  • Detect problem data in the systematic “shape” of the data
  • Remediate data integrity and hygiene problems
  • Prepare data for analytic and machine learning tasks
  • Impute values into missing or unreliable data
  • Generate synthetic features that are more amenable to data science, data analysis, or visualization goals.

Who This Book Is For

This book is designed to benefit software developers, data scientists, aspiring data scientists, and students who are interested in data analysis or scientific computing.

Basic familiarity with statistics, general concepts in machine learning, knowledge of a programming language (Python or R), and some exposure to data science are helpful. A glossary, references, and friendly asides should help bring all readers up to speed.

The text will also be helpful to intermediate and advanced data scientists who want to improve their rigor in data hygiene and wish for a refresher on data preparation issues.


暂无评价
暂时没有数据

交易规则

免责声明


1、本站所有分享材料(数据、资料)均为网友上传,如有侵犯您的任何权利,请您第一时间通过微信(zbook8_com) 、QQ(316821785)、 电话(13111111111)联系本站,本站将在24小时内回复您的诉求!谢谢!
2、本站所有商品,除特殊说明外,均为(电子版)Ebook,请购买分享内容前请务必注意。特殊商品有说明实物的,按照说明为准。

发货方式


1、自动:在上方保障服务中标有自动发货的宝贝,拍下后,将会自动收到来自卖家的宝贝获取(下载)链接   [个人中心->我的订单->点击订单 查看详情];
2、手动:未标有自动发货的的宝贝,拍下后,通过QQ或订单中的电话联系对方。

退款说明


1、描述:书籍描述(含标题)与实际不一致的(例:描述PDF,实际为epub、缺页少页、版本不符等);
2、链接:部分图书会给出链接,直接链接到官网或者其他站点,以便于提示,如与给出不符等;
3、发货:手动发货书籍,在卖家未发货前,已申请退款的;
4、其他:如质量方面的硬性常规问题等。
注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法对描述进行修改!

注意事项


1、在未购买下前,双方在QQ上所商定的内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准);
2、在宝贝同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外);
3、在没有"无任何正当退款依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;
4、虽然交易产生纠纷的几率很小,但请尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于网站工作人员介入快速处理。