[FOX-Ebook]Generative Adversarial Networks with Industrial Use Cases: Learning How to Build GAN...

[FOX-Ebook]Generative Adversarial Networks with Industrial Use Cases: Learning How to Build GAN Applications for Retail, Healthcare, Telecom, Media, Education, and HRTech
¥34.99 市场价 ¥899.99
库存
9999
数量
-
+
联系卖家   QQ:316821785   微信:zbook8_com  电话:13111111111   
商品特色:担保交易手动发货商品,工作人员手动发货。

自动发货宝贝:购买后直接到我买到的商品-订单详情-收货信息获取下载链接。
手动发货宝贝:购买后请留言邮箱或联系方式,0-4小时内由工作人员发到您邮箱。
购买后任何问题请联系商家或直接联系本站站务微信或者QQ。
书籍格式:
isbn:
排版:
新旧程度:

-------如果这里没有任何信息,不是真没有,是我们懒!请复制书名上amazon搜索书籍信息。-------

Best Book on GAN

Key FeaturesUnderstanding the deep learning landscape and GAN’s relevance Learning basics of GANLearning how to build GAN from scratch Understanding mathematics and limitations of GAN Understanding GAN applications for Retail, Healthcare, Telecom, Media and EduTechUnderstanding the important GAN papers such as pix2pixGAN, styleGAN, cycleGAN, DCGAN Learning how to build GAN code for industrial applications Understanding the difference between varieties of GAN

Description
This book aims at simplifying GAN for everyone. This book is very important for machine learning engineers, researchers, students, professors, and professionals. Universities and online course instructors will find this book very interesting for teaching advanced deep learning, specially Generative Adversarial Networks(GAN). Industry professionals, coders, and data scientists can learn GAN from scratch. They can learn how to build GAN codes for industrial applications for Healthcare, Retail, HRTech, EduTech, Telecom, Media, and Entertainment. Mathematics of GAN is discussed and illustrated. KL divergence and other parts of GAN are illustrated and discussed mathematically. This book teaches how to build codes for pix2pix GAN, DCGAN, CGAN, styleGAN, cycleGAN, and many other GAN. Machine Learning and Deep Learning Researchers will learn GAN in the shortest possible time with the help of this book.

What will you learn
Machine Learning Researchers would be comfortable in building advanced deep learning codes for Industrial applications Data Scientists would start solving very complex problems in deep learning Students would be ready to join an industry with these skills Average data engineers and scientists would be able to develop complex GAN codes to solve the toughest problems in computer vision

Who this book is for
This book is perfect for machine learning engineers, data scientists, data engineers, deep learning professionals and computer vision researchers. This book is also very useful for medical imaging professionals, autonomous vehicles professionals, retail fashion professionals, media & entertainment professional, edutech and HRtech professionals. Professors and Students working in machine learning, deep learning, computer vision and industrial applications would find this book extremely useful.

About the Author
Navin K Manaswi has been developing AI solutions/products for HRTech, Retail, ITSM, Healthcare, Telecom, Insurance, Digital Marketing, and Supply Chain while working for Consulting companies in Malaysia, Singapore, and Dubai . He is a serial entrepreneur in Artificial Intelligence and Augmented Reality Space. He has been building solutions for video intelligence, document intelligence, and human-like chatbots. He is Guest Faculty at IIT Kharagpur for AI Course and an author of the famous book on deep learning. He is officially a Google Developer Expert in machine learning. He has been organizing and mentoring AI hackathons and boot camps at Google events and college events. His startup WoWExp has been building awesome products in AI and AR space.


暂无评价
暂时没有数据

交易规则

免责声明


1、本站所有分享材料(数据、资料)均为网友上传,如有侵犯您的任何权利,请您第一时间通过微信(zbook8_com) 、QQ(316821785)、 电话(13111111111)联系本站,本站将在24小时内回复您的诉求!谢谢!
2、本站所有商品,除特殊说明外,均为(电子版)Ebook,请购买分享内容前请务必注意。特殊商品有说明实物的,按照说明为准。

发货方式


1、自动:在上方保障服务中标有自动发货的宝贝,拍下后,将会自动收到来自卖家的宝贝获取(下载)链接   [个人中心->我的订单->点击订单 查看详情];
2、手动:未标有自动发货的的宝贝,拍下后,通过QQ或订单中的电话联系对方。

退款说明


1、描述:书籍描述(含标题)与实际不一致的(例:描述PDF,实际为epub、缺页少页、版本不符等);
2、链接:部分图书会给出链接,直接链接到官网或者其他站点,以便于提示,如与给出不符等;
3、发货:手动发货书籍,在卖家未发货前,已申请退款的;
4、其他:如质量方面的硬性常规问题等。
注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法对描述进行修改!

注意事项


1、在未购买下前,双方在QQ上所商定的内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准);
2、在宝贝同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外);
3、在没有"无任何正当退款依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;
4、虽然交易产生纠纷的几率很小,但请尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于网站工作人员介入快速处理。