[FOX-Ebook]An Introduction to Approaches and Modern Applications With Ensemble Learning

¥34.99 市场价 ¥899.99
库存
9999
数量
-
+
联系卖家   QQ:316821785   微信:zbook8_com  电话:13111111111   
商品特色:担保交易手动发货商品,工作人员手动发货。

自动发货宝贝:购买后直接到我买到的商品-订单详情-收货信息获取下载链接。
手动发货宝贝:购买后请留言邮箱或联系方式,0-4小时内由工作人员发到您邮箱。
购买后任何问题请联系商家或直接联系本站站务微信或者QQ。
书籍格式:
isbn:
排版:
新旧程度:

-------如果这里没有任何信息,不是真没有,是我们懒!请复制书名上amazon搜索书籍信息。-------

From the successful application of deep learning (DL) in AlphaGo in 2012 to the recent advances in edge computing, artificial intelligence (AI) has continued to develop over the years. In the face of the current sweeping trend of AI, ensemble learning (EL) is expected to be further applied to DL and AI for developing higher-level ensemble systems in the future. Moreover, it could become an important step for achieving “The Master Algorithm” proposed by Prof. Pedro Domingos. In light of this, EL will continue to make a significant contribution to future development. The purpose of this book is to provide insights into EL for readers not majoring in computer science or related subjects, introduce the latest development and applications of EL; in particular, share its practical applications in various fields. Accordingly, this book intends to present theoretical parts relating to mathematics and computing in a simple and concise manner. The examples and practical use of EL have been used to explain methods that utilize EL to solve readers” issues in their fields, which demonstrates the essence of EL for practical applications. While many AI and ML books are available on the market, most require a certain level of mathematical and machine learning (ML) knowledge. Complicated theories of mathematics and computation may be intimidating for people without a background in computer science and engineering, such as biological and medical researchers. It would be unfortunate if they were to miss the opportunity to use EL as a practical tool to solve data analysis problems at hand. Moreover, EL is usually introduced in the later or advanced chapters of AI and ML books. Beginners in ML, or readers without a technical background, are likely to be frustrated by mathematical or technical terms that only appear occasionally in the book or be anxious about complicated mathematical and computational theories related to classification algorithms. It would be regrettable if they were intimidated, and therefore, missed the opportunity to learn and use EL. From a practical perspective, existing classification techniques, such as decision trees with the C4.5 algorithm, support vector machines, and neural networks are now relatively mature and have been proven to be effective. For readers without a technical background, it is not essential to understand the complicated mathematical and computational theories behind the above techniques. Instead, it is recommended to grasp the logic and meaning of parameters in these classification algorithms and directly conduct tests using EL. Learning through practice can help readers to establish computational thinking. It is the best approach to learning EL, ML, AI, and DL.Furthermore, this book provides references and recommended reading for each technique to satisfy the curiosity of some readers with regard to mathematical theories and algorithms so that they can acquire further knowledge and answer their questions. Finally, the hope is that readers can be made aware, through practical use of EL, that they can build a robust ensemble system and solve problems in their areas without having to learn the absolute details of specific ML algorithms and mathematics behind the algorithms.This book provides insights into EL from worldwide experts and scholars in various fields. This book extensively introduces and discusses the application of EL in various fields and the current and future research directions of its novel applications. It also reviews some of the more popular areas in which EL has received widespread attention in recent years in the ML and AI. Each chapter opens with an introduction to ML and EL techniques, and then, analyzes the applications of EL in different fields, such as signal and image processing, medical care, education, geology, and agriculture. More than two experts and scholars in related fields acted as reviewers for the peer review of each chapter. It is hoped that these applications in various fields can inspire readers to use EL in practice.


暂无评价
暂时没有数据

交易规则

免责声明


1、本站所有分享材料(数据、资料)均为网友上传,如有侵犯您的任何权利,请您第一时间通过微信(zbook8_com) 、QQ(316821785)、 电话(13111111111)联系本站,本站将在24小时内回复您的诉求!谢谢!
2、本站所有商品,除特殊说明外,均为(电子版)Ebook,请购买分享内容前请务必注意。特殊商品有说明实物的,按照说明为准。

发货方式


1、自动:在上方保障服务中标有自动发货的宝贝,拍下后,将会自动收到来自卖家的宝贝获取(下载)链接   [个人中心->我的订单->点击订单 查看详情];
2、手动:未标有自动发货的的宝贝,拍下后,通过QQ或订单中的电话联系对方。

退款说明


1、描述:书籍描述(含标题)与实际不一致的(例:描述PDF,实际为epub、缺页少页、版本不符等);
2、链接:部分图书会给出链接,直接链接到官网或者其他站点,以便于提示,如与给出不符等;
3、发货:手动发货书籍,在卖家未发货前,已申请退款的;
4、其他:如质量方面的硬性常规问题等。
注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法对描述进行修改!

注意事项


1、在未购买下前,双方在QQ上所商定的内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准);
2、在宝贝同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外);
3、在没有"无任何正当退款依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;
4、虽然交易产生纠纷的几率很小,但请尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于网站工作人员介入快速处理。