Gain the confidence you need to apply machine learning in your daily work. With this practical guide, author Matthew Kirk shows you how to integrate and test machine learning algorithms in your code, without the academic subtext.
Featuring graphs and highlighted code examples throughout, the book features tests with Python’s Numpy, Pandas, Scikit-Learn, and SciPy data science libraries. If you’re a software engineer or business analyst interested in data science, this book will help you:
Chapter 1. Probably Approximately Correct Software
Chapter 2. A Quick Introduction to Machine Learning
Chapter 3. K-Nearest Neighbors
Chapter 4. Naive Bayesian Classification
Chapter 5. Decision Trees and Random Forests
Chapter 6. Hidden Markov Models
Chapter 7. Support Vector Machines
Chapter 8. Neural Networks
Chapter 9. Clustering
Chapter 10. Improving Models and Data Extraction
Chapter 11. Putting It Together: Conclusion