[FOX-Ebook]Statistical and Machine-Learning Data Mining, 3rd Edition

¥34.99 市场价 ¥899.99
库存
9999
数量
-
+
联系卖家   QQ:316821785   微信:zbook8_com  电话:13111111111   
商品特色:担保交易手动发货商品,工作人员手动发货。

自动发货宝贝:购买后直接到我买到的商品-订单详情-收货信息获取下载链接。
手动发货宝贝:购买后请留言邮箱或联系方式,0-4小时内由工作人员发到您邮箱。
购买后任何问题请联系商家或直接联系本站站务微信或者QQ。
书籍格式:
isbn:
排版:
新旧程度:

-------如果这里没有任何信息,不是真没有,是我们懒!请复制书名上amazon搜索书籍信息。-------

Statistical and Machine-Learning Data Mining:: Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition

The third edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. is a compilation of new and creative data mining techniques, which address the scaling-up of the framework of classical and modern statistical methodology, for predictive modeling and analysis of big data. SM-DM provides proper solutions to common problems facing the newly minted data scientist in the data mining discipline. Its presentation focuses on the needs of the data scientists (commonly known as statisticians, data miners and data analysts), delivering practical yet powerful, simple yet insightful quantitative techniques, most of which use the “old” statistical methodologies improved upon by the new machine learning influence.

Table of Contents

Chapter 1: Introduction
Chapter 2: Science Dealing with Data: Statistics and Data Science
Chapter 3: Two Basic Data Mining Methods for Variable Assessment
Chapter 4: CHAID-Based Data Mining for Paired-Variable Assessment
Chapter 5: The Importance of Straight Data Simplicity and Desirability for Good Model-Building Practice
Chapter 6: Symmetrizing Ranked Data: A Statistical Data Mining Method for Improving the Predictive Power of Data
Chapter 7: Principal Component Analysis: A Statistical Data Mining Method for Many-Variable Assessment
Chapter 8: Market Share Estimation: Data Mining for an Exceptional Case
Chapter 9: The Correlation Coefficient: Its Values Range between Plus and Minus 1, or Do They?
Chapter 10: Logistic Regression: The Workhorse of Response Modeling
Chapter 11: Predicting Share of Wallet without Survey Data
Chapter 12: Ordinary Regression: The Workhorse of Profit Modeling
Chapter 13: Variable Selection Methods in Regression: Ignorable Problem, Notable Solution
Chapter 14: CHAID for Interpreting a Logistic Regression Model
Chapter 15: The Importance of the Regression Coefficient
Chapter 16: The Average Correlation: A Statistical Data Mining Measure for Assessment of Competing Predictive Models and the Importance of the Predictor Variables
Chapter 17: CHAID for Specifying a Model with Interaction Variables
Chapter 18: Market Segmentation Classification Modeling with Logistic Regression
Chapter 19: Market Segmentation Based on Time-Series Data Using Latent Class Analysis
Chapter 20: Market Segmentation: An Easy Way to Understand the Segments
Chapter 21: The Statistical Regression Model: An Easy Way to Understand the Model
Chapter 22: CHAID as a Method for Filling in Missing Values
Chapter 23: Model Building with Big Complete and Incomplete Data
Chapter 24: Art, Science, Numbers, and Poetry
Chapter 25: Identifying Your Best Customers: Descriptive, Predictive, and Look-Alike Profiling
Chapter 26: Assessment of Marketing Models
Chapter 27: Decile Analysis: Perspective and Performance
Chapter 28: Net T-C Lift Model: Assessing the Net Effects of Test and Control Campaigns
Chapter 29: Bootstrapping in Marketing: A New Approach for Validating Models
Chapter 30: Validating the Logistic Regression Model: Try Bootstrapping
Chapter 31: Visualization of Marketing Models: Data Mining to Uncover Innards of a Model
Chapter 32: The Predictive Contribution Coefficient: A Measure of Predictive Importance
Chapter 33: Regression Modeling Involves Art, Science, and Poetry, Too
Chapter 34: Opening the Dataset: A Twelve-Step Program for Dataholics
Chapter 35: Genetic and Statistic Regression Models: A Comparison
Chapter 36: Data Reuse: A Powerful Data Mining Effect of the GenIQ Model
Chapter 37: A Data Mining Method for Moderating Outliers Instead of Discarding Them
Chapter 38: Overfitting: Old Problem, New Solution
Chapter 39: The Importance of Straight Data: Revisited
Chapter 40: The GenIQ Model: Its Definition and an Application
Chapter 41: Finding the Best Variables for Marketing Models
Chapter 42: Interpretation of Coefficient-Free Models
Chapter 43: Text Mining: Primer, Illustration, and TXTDM Software
Chapter 44: Some of My Favorite Statistical Subroutines


暂无评价
暂时没有数据

交易规则

免责声明


1、本站所有分享材料(数据、资料)均为网友上传,如有侵犯您的任何权利,请您第一时间通过微信(zbook8_com) 、QQ(316821785)、 电话(13111111111)联系本站,本站将在24小时内回复您的诉求!谢谢!
2、本站所有商品,除特殊说明外,均为(电子版)Ebook,请购买分享内容前请务必注意。特殊商品有说明实物的,按照说明为准。

发货方式


1、自动:在上方保障服务中标有自动发货的宝贝,拍下后,将会自动收到来自卖家的宝贝获取(下载)链接   [个人中心->我的订单->点击订单 查看详情];
2、手动:未标有自动发货的的宝贝,拍下后,通过QQ或订单中的电话联系对方。

退款说明


1、描述:书籍描述(含标题)与实际不一致的(例:描述PDF,实际为epub、缺页少页、版本不符等);
2、链接:部分图书会给出链接,直接链接到官网或者其他站点,以便于提示,如与给出不符等;
3、发货:手动发货书籍,在卖家未发货前,已申请退款的;
4、其他:如质量方面的硬性常规问题等。
注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法对描述进行修改!

注意事项


1、在未购买下前,双方在QQ上所商定的内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准);
2、在宝贝同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外);
3、在没有"无任何正当退款依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;
4、虽然交易产生纠纷的几率很小,但请尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于网站工作人员介入快速处理。