[FOX-Ebook]DATA SCIENCE CRASH COURSE: Thyroid Disease Classification and Prediction Using Machi...

[FOX-Ebook]DATA SCIENCE CRASH COURSE: Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning
¥34.99 市场价 ¥899.99
库存
9999
数量
-
+
联系卖家   QQ:316821785   微信:zbook8_com  电话:13111111111   
商品特色:担保交易手动发货商品,工作人员手动发货。

自动发货宝贝:购买后直接到我买到的商品-订单详情-收货信息获取下载链接。
手动发货宝贝:购买后请留言邮箱或联系方式,0-4小时内由工作人员发到您邮箱。
购买后任何问题请联系商家或直接联系本站站务微信或者QQ。
书籍格式:
isbn:
排版:
新旧程度:

-------如果这里没有任何信息,不是真没有,是我们懒!请复制书名上amazon搜索书籍信息。-------

Thyroid disease is a prevalent condition that affects the thyroid gland, leading to various health issues. In this session of the Data Science Crash Course, we will explore the classification and prediction of thyroid disease using machine learning and deep learning techniques, all implemented with the power of Python and a user-friendly GUI built with PyQt.

We will start by conducting data exploration on a comprehensive dataset containing relevant features and thyroid disease labels. Through analysis and pattern recognition, we will gain insights into the underlying factors contributing to thyroid disease.

Next, we will delve into the machine learning phase, where we will implement popular algorithms including Support Vector, Logistic Regression, K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient Boosting, Light Gradient Boosting, Naive Bayes, Adaboost, Extreme Gradient Boosting, and Multi-Layer Perceptron. These models will be trained using different preprocessing techniques, including raw data, normalization, and standardization, to evaluate their performance and accuracy. We train each model on the training dataset and evaluate its performance using appropriate metrics such as accuracy, precision, recall, and F1-score. This helps us assess how well the models can predict stroke based on the given features. To optimize the models’ performance, we perform hyperparameter tuning using techniques like grid search or randomized search. This involves systematically exploring different combinations of hyperparameters to find the best configuration for each model. After training and tuning the models, we save them to disk using joblib. This allows us to reuse the trained models for future predictions without having to train them again.

Moving beyond traditional machine learning, we will build an artificial neural network (ANN) using TensorFlow. This ANN will capture complex relationships within the data and provide accurate predictions of thyroid disease. To ensure the effectiveness of our ANN, we will train it using a curated dataset split into training and testing sets. This will allow us to evaluate the model’s performance and its ability to generalize predictions.

To provide an interactive and user-friendly experience, we will develop a Graphical User Interface (GUI) using PyQt. The GUI will allow users to input data, select prediction methods (machine learning or deep learning), and visualize the results. Through the GUI, users can explore different prediction methods, compare performance, and gain insights into thyroid disease classification. Visualizations of training and validation loss, accuracy, and confusion matrices will enhance understanding and model evaluation. Line plots comparing true values and predicted values will further aid interpretation and insights into classification outcomes. Throughout the project, we will emphasize the importance of preprocessing techniques, feature selection, and model evaluation in building reliable and effective thyroid disease classification and prediction models.

By the end of the project, readers will have gained practical knowledge in data exploration, machine learning, deep learning, and GUI development. They will be equipped to apply these techniques to other domains and real-world challenges. The project’s comprehensive approach, from data exploration to model development and GUI implementation, ensures a holistic understanding of thyroid disease classification and prediction. It empowers readers to explore applications of data science in healthcare and beyond.


暂无评价
暂时没有数据

交易规则

免责声明


1、本站所有分享材料(数据、资料)均为网友上传,如有侵犯您的任何权利,请您第一时间通过微信(zbook8_com) 、QQ(316821785)、 电话(13111111111)联系本站,本站将在24小时内回复您的诉求!谢谢!
2、本站所有商品,除特殊说明外,均为(电子版)Ebook,请购买分享内容前请务必注意。特殊商品有说明实物的,按照说明为准。

发货方式


1、自动:在上方保障服务中标有自动发货的宝贝,拍下后,将会自动收到来自卖家的宝贝获取(下载)链接   [个人中心->我的订单->点击订单 查看详情];
2、手动:未标有自动发货的的宝贝,拍下后,通过QQ或订单中的电话联系对方。

退款说明


1、描述:书籍描述(含标题)与实际不一致的(例:描述PDF,实际为epub、缺页少页、版本不符等);
2、链接:部分图书会给出链接,直接链接到官网或者其他站点,以便于提示,如与给出不符等;
3、发货:手动发货书籍,在卖家未发货前,已申请退款的;
4、其他:如质量方面的硬性常规问题等。
注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法对描述进行修改!

注意事项


1、在未购买下前,双方在QQ上所商定的内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准);
2、在宝贝同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外);
3、在没有"无任何正当退款依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;
4、虽然交易产生纠纷的几率很小,但请尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于网站工作人员介入快速处理。