[FOX-Ebook]Machine Learning under Resource Constraints, Volume 2: Discovery in Physics

¥34.99 市场价 ¥899.99
库存
9999
数量
-
+
联系卖家   QQ:316821785   微信:zbook8_com  电话:13111111111   
商品特色:担保交易手动发货商品,工作人员手动发货。

自动发货宝贝:购买后直接到我买到的商品-订单详情-收货信息获取下载链接。
手动发货宝贝:购买后请留言邮箱或联系方式,0-4小时内由工作人员发到您邮箱。
购买后任何问题请联系商家或直接联系本站站务微信或者QQ。
书籍格式:
isbn:
排版:
新旧程度:

-------如果这里没有任何信息,不是真没有,是我们懒!请复制书名上amazon搜索书籍信息。-------

Machine learning is part of Artificial Intelligence since its beginning. Certainly, not learning would only allow the perfect being to show intelligent behavior. All others, be it humans or machines, need to learn in order to enhance their capabilities. In the eighties of the last century, learning from examples and modeling human learning strategies have been investigated in concert. The formal statistical basis of many learning methods has been put forward later on and is still an integral part of machine learning. Neural networks have always been in the toolbox of methods. Integrating all the pre-processing, exploitation of kernel functions, and transformation steps of a machine learning process into the architecture of a deep neural network increased the performance of this model type considerably. Modern machine learning is challenged on the one hand by the amount of data and on the other hand by the demand of real-time inference. This leads to an interest in computing architectures and modern processors. For a long time, the machine learning research could take the von-Neumann architecture for granted. All algorithms were designed for the classical CPU. Issues of implementation on a particular architecture have been ignored. This is no longer possible. The time for independently investigating machine learning and computational architecture is over.

Computing architecture has experienced a similarly rampant development from mainframe or personal computers in the last century to now very large compute clusters on the one hand and ubiquitous computing of embedded systems in the Internet of Things on the other hand. Cyber-physical systems’ sensors produce a huge amount of streaming data which need to be stored and analyzed. Their actuators need to react in real-time. This clearly establishes a close connection with machine learning. Cyber-physical systems and systems in the Internet of Things consist of diverse components, heterogeneous both in hard- and software. Modern multi-core systems, graphic processors, memory technologies and hardware-software codesign offer opportunities for better implementations of machine learning models.

Machine learning and embedded systems together now form a field of research which tackles leading edge problems in machine learning, algorithm engineering, and embedded systems. Machine learning today needs to make the resource demands of learning and inference meet the resource constraints of used computer architecture and platforms. A large variety of algorithms for the same learning method and, moreover, diverse implementations of an algorithm for particular computing architectures optimize learning with respect to resource efficiency while keeping some guarantees of accuracy. The trade-off between a decreased energy consumption and an increased error rate, to just give an example, needs to be theoretically shown for training a model and the model inference. Pruning and quantization are ways of reducing the resource requirements by either compressing or approximating the model. In addition to memory and energy consumption, timeliness is an important issue, since many embedded systems are integrated into large products that interact with the physical world. If the results are delivered too late, they may have become useless. As a result, real-time guarantees are needed for such systems. To efficiently utilize the available resources, e.g., processing power, memory, and accelerators, with respect to response time, energy consumption, and power dissipation, different scheduling algorithms and resource management strategies need to be developed.

This book series addresses machine learning under resource constraints as well as the application of the described methods in various domains of science and engineering. Turning big data into smart data requires many steps of data analysis: methods for extracting and selecting features, filtering and cleaning the data, joining heterogeneous sources, aggregating the data, and learning predictions need to scale up. The algorithms are challenged on the one hand by high-throughput data, gigantic data sets like in astrophysics, on the other hand by high dimensions like in genetic data. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are applied to program executions in order to save resources. The three books will have the following subtopics:

Volume 1: Machine Learning under Resource Constraints – Fundamentals

Volume 2: Machine Learning and Physics under Resource Constraints – Discovery

Volume 3: Machine Learning under Resource Constraints – Applications
Volume 2 is about machine learning for knowledge discovery in particle and astroparticle physics. Their instruments, e.g., particle accelerators or telescopes, gather petabytes of data. Here, machine learning is necessary not only to process the vast amounts of data and to detect the relevant examples efficiently, but also as part of the knowledge discovery process itself. The physical knowledge is encoded in simulations that are used to train the machine learning models. At the same time, the interpretation of the learned models serves to expand the physical knowledge. This results in a cycle of theory enhancement supported by machine learning.


暂无评价
暂时没有数据

交易规则

免责声明


1、本站所有分享材料(数据、资料)均为网友上传,如有侵犯您的任何权利,请您第一时间通过微信(zbook8_com) 、QQ(316821785)、 电话(13111111111)联系本站,本站将在24小时内回复您的诉求!谢谢!
2、本站所有商品,除特殊说明外,均为(电子版)Ebook,请购买分享内容前请务必注意。特殊商品有说明实物的,按照说明为准。

发货方式


1、自动:在上方保障服务中标有自动发货的宝贝,拍下后,将会自动收到来自卖家的宝贝获取(下载)链接   [个人中心->我的订单->点击订单 查看详情];
2、手动:未标有自动发货的的宝贝,拍下后,通过QQ或订单中的电话联系对方。

退款说明


1、描述:书籍描述(含标题)与实际不一致的(例:描述PDF,实际为epub、缺页少页、版本不符等);
2、链接:部分图书会给出链接,直接链接到官网或者其他站点,以便于提示,如与给出不符等;
3、发货:手动发货书籍,在卖家未发货前,已申请退款的;
4、其他:如质量方面的硬性常规问题等。
注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法对描述进行修改!

注意事项


1、在未购买下前,双方在QQ上所商定的内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准);
2、在宝贝同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外);
3、在没有"无任何正当退款依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;
4、虽然交易产生纠纷的几率很小,但请尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于网站工作人员介入快速处理。