[FOX-Ebook]The Regularization Cookbook: Explore practical recipes to improve the functionality ...

[FOX-Ebook]The Regularization Cookbook: Explore practical recipes to improve the functionality of your ML models
¥34.99 市场价 ¥899.99
库存
9999
数量
-
+
联系卖家   QQ:316821785   微信:zbook8_com  电话:13111111111   
商品特色:担保交易手动发货商品,工作人员手动发货。

自动发货宝贝:购买后直接到我买到的商品-订单详情-收货信息获取下载链接。
手动发货宝贝:购买后请留言邮箱或联系方式,0-4小时内由工作人员发到您邮箱。
购买后任何问题请联系商家或直接联系本站站务微信或者QQ。
书籍格式:
isbn:
排版:
新旧程度:

-------如果这里没有任何信息,不是真没有,是我们懒!请复制书名上amazon搜索书籍信息。-------

Methodologies and recipes to regularize nearly any machine learning and deep learning model using cutting-edge technologies such as Stable Diffusion, Dall-E and GPT-3.

Key Features

  • Learn how to diagnose whether regularization is needed for any machine learning model
  • Regularize different types of ML models using a broad range of techniques and methods
  • Get the best of your models using state of the art Computer Vision and NLP

Book Description

Deploying machine learning solutions is all about getting robust results on new, unseen data. To achieve such results, one way is regularization. Regularization can take many forms and can be used in many ways, and not all methods apply to all cases. This book aims at providing the right tools and methods to handle any case properly, with ready-to-use working codes as well as theoretical explanations whenever possible.

After an introduction to regularization and methods to diagnose when to use it, we will start implementing regularization techniques on linear models such as linear and logistic regression, and tree-based models such as random forest and gradient boosting.

The book will then introduce specific regularization methods based on data. High cardinality features and imbalanced datasets may require specific regularization methods that will be explored.

In the last five chapters, the book will cover regularization for deep learning models. After reviewing general methods that apply to any type of neural network, the book will dive into more NLP-specific methods for RNNs and transformers, as well as using BERT or GPT-3. We will close with regularization for Computer Vision, covering CNN specifics, as well as the use of generative models such as Stable Diffusion and Dall-E.

What you will learn

  • How to diagnose overfitting properly and when regularization is needed
  • Regularizing common linear models such as logistic regression
  • Get a deeper knowledge of regularizing tree-based models such as XGBoost
  • Leverage structured data to regularize ML models
  • Learn general techniques to regularize deep learning models
  • Discover specific regularization techniques for NLP problems using Transformers
  • Understand the regularization in Computer Vision models and CNN architectures
  • Apply cutting-edge computer vision regularization with generative models

Who This Book Is For

Whether you are a data scientist, a machine learning engineer, or just a machine learning enthusiast, if you want to get hands-on knowledge of the available methods to improve the performances of your models, this book is for you.

Basic, hands-on knowledge of Python is expected to get the most out of the proposed codes. Also, basic concepts of ML and DL are reminded to smooth the learning curve, no matter their level. This book is also aimed at experienced professionals willing to use state-of-the-art methods for regularization.


暂无评价
暂时没有数据

交易规则

免责声明


1、本站所有分享材料(数据、资料)均为网友上传,如有侵犯您的任何权利,请您第一时间通过微信(zbook8_com) 、QQ(316821785)、 电话(13111111111)联系本站,本站将在24小时内回复您的诉求!谢谢!
2、本站所有商品,除特殊说明外,均为(电子版)Ebook,请购买分享内容前请务必注意。特殊商品有说明实物的,按照说明为准。

发货方式


1、自动:在上方保障服务中标有自动发货的宝贝,拍下后,将会自动收到来自卖家的宝贝获取(下载)链接   [个人中心->我的订单->点击订单 查看详情];
2、手动:未标有自动发货的的宝贝,拍下后,通过QQ或订单中的电话联系对方。

退款说明


1、描述:书籍描述(含标题)与实际不一致的(例:描述PDF,实际为epub、缺页少页、版本不符等);
2、链接:部分图书会给出链接,直接链接到官网或者其他站点,以便于提示,如与给出不符等;
3、发货:手动发货书籍,在卖家未发货前,已申请退款的;
4、其他:如质量方面的硬性常规问题等。
注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法对描述进行修改!

注意事项


1、在未购买下前,双方在QQ上所商定的内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准);
2、在宝贝同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外);
3、在没有"无任何正当退款依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;
4、虽然交易产生纠纷的几率很小,但请尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于网站工作人员介入快速处理。