[FOX-Ebook]Feature Engineering Made Easy

¥34.99 市场价 ¥899.99
库存
9999
数量
-
+
联系卖家   QQ:316821785   微信:zbook8_com  电话:13111111111   
商品特色:担保交易手动发货商品,工作人员手动发货。

自动发货宝贝:购买后直接到我买到的商品-订单详情-收货信息获取下载链接。
手动发货宝贝:购买后请留言邮箱或联系方式,0-4小时内由工作人员发到您邮箱。
购买后任何问题请联系商家或直接联系本站站务微信或者QQ。
书籍格式:
isbn:
排版:
新旧程度:

-------如果这里没有任何信息,不是真没有,是我们懒!请复制书名上amazon搜索书籍信息。-------

A perfect guide to speed up the predicting power of machine learning algorithms

Key Features

  • Design, discover, and create dynamic, efficient features for your machine learning application
  • Understand your data in depth and derive astonishing data insights with the help of this guide
  • Grasp powerful feature engineering techniques and build machine learning systems

Book Description

Feature engineering is the most important step in creating powerful machine learning systems. This book will take you through the entire feature engineering journey to make machine learning much more systematic and effective.

You will start with understanding your data; often the success of your ML models depends on how you leverage different feature types, such as continuous, categorical, and more. You will learn when to include a feature, when to omit it, and why, all by understanding error analysis and the acceptability of your models. You will also learn to convert a problem statement into useful new features. This book will guide you in delivering features driven by business needs as well as mathematical insights, and you’ll see how to use machine learning for your data.

By the end of the book, you will have become proficient in feature selection, feature learning, and feature pptimization.

What you will learn

  • Identify and leverage different feature types
  • Clean features in data to improve predictive power
  • Understand why and how to perform feature selection and model error analysis
  • Leverage domain knowledge to construct new features
  • Deliver features based on mathematical insights
  • Use machine learning algorithms to construct features
  • Master feature engineering and optimization
  • Harness feature engineering for real-world applications through a structured case study

Who This Book Is For

If you are a data science professional or a machine learning engineer looking to strengthen your predictive analytics model, then this book is a perfect guide for you. Some basic understanding of machine learning concepts and Python scripting would be enough to get started with this book.

Table of Contents

  1. Introduction to Feature Engineering
  2. Feature Understanding – What’s in My Data?
  3. Feature Improvement – Cleaning Datasets
  4. Feature Construction
  5. Feature Selection
  6. Feature Transformation – How to Change Your Perspective
  7. Feature Learning – Automatic Construction of Features
  8. Putting It All Together

暂无评价
暂时没有数据

交易规则

免责声明


1、本站所有分享材料(数据、资料)均为网友上传,如有侵犯您的任何权利,请您第一时间通过微信(zbook8_com) 、QQ(316821785)、 电话(13111111111)联系本站,本站将在24小时内回复您的诉求!谢谢!
2、本站所有商品,除特殊说明外,均为(电子版)Ebook,请购买分享内容前请务必注意。特殊商品有说明实物的,按照说明为准。

发货方式


1、自动:在上方保障服务中标有自动发货的宝贝,拍下后,将会自动收到来自卖家的宝贝获取(下载)链接   [个人中心->我的订单->点击订单 查看详情];
2、手动:未标有自动发货的的宝贝,拍下后,通过QQ或订单中的电话联系对方。

退款说明


1、描述:书籍描述(含标题)与实际不一致的(例:描述PDF,实际为epub、缺页少页、版本不符等);
2、链接:部分图书会给出链接,直接链接到官网或者其他站点,以便于提示,如与给出不符等;
3、发货:手动发货书籍,在卖家未发货前,已申请退款的;
4、其他:如质量方面的硬性常规问题等。
注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法对描述进行修改!

注意事项


1、在未购买下前,双方在QQ上所商定的内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准);
2、在宝贝同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外);
3、在没有"无任何正当退款依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;
4、虽然交易产生纠纷的几率很小,但请尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于网站工作人员介入快速处理。