[AME]Predicting Heart Failure: Invasive, Non-Invasive, Machine Learning and Artificial Intellig...

[AME]Predicting Heart Failure: Invasive, Non-Invasive, Machine Learning and Artificial Intelligence Based Methods (Original PDF)
¥85.00 市场价 ¥899.99
库存
9999
数量
-
+
联系卖家   QQ:316821785   微信:zbook8_com  电话:13111111111   
商品特色:担保交易手动发货商品,工作人员手动发货。

自动发货宝贝:购买后直接到我买到的商品-订单详情-收货信息获取下载链接。
手动发货宝贝:购买后请留言邮箱或联系方式,0-4小时内由工作人员发到您邮箱。
购买后任何问题请联系商家或直接联系本站站务微信或者QQ。
书籍格式:
isbn:
排版:
新旧程度:

-------如果这里没有任何信息,不是真没有,是我们懒!请复制书名上amazon搜索书籍信息。-------

By Kishor Kumar Sadasivuni, Sumaya Al-Maadeed, Huseyin C. Yalcin, Issam Bait Bahadur, Hassen M. Ouakad

Our knowledge of human biology especially related to the heart, increases every day. This makes it nearly impossible for physicians to stay current on the latest research in their fields, let alone in all of the others that directly affect their ability to treat their patients properly. Predicting Heart Failure: Invasive, Non-Invasive, Machine Learning and Artificial Intelligence Based Methods focuses on the mechanics and symptoms of heart failure and various approaches, including conventional and modern techniques to diagnose it. Moreover, it book provides a detailed presentation of the latest research data for preventing and treating heart failure.

In this book, thirteen chapters address different conditions related to the heart, with detailed descriptions of each. The first chapter discusses invasive, non-invasive, machine learning, and artificial intelligence-based methods for predicting heart failure. Additionally, this chapter discusses heart failure causes, symptoms, and treatment, as well as research related to heart failure. In the second chapter, we examine the traditional methods of predicting heart diseases and implementing artificial intelligence technology to predict heart diseases accurately. A discussion of the main characteristics of cardiovascular biosensors is presented in Chapter 3, along with their open issues for development and application. We summarize the difficulties of wireless sensor communication and power transfer in chapters four, five, and six, which outline the utility of artificial intelligence in cardiology. Chapter 7 discusses how to predict heart diseases using data mining classification techniques. Applied machine learning is all discussed in Chapters 8 and 9 and advanced methods for estimating HF severity and diagnosing and predicting heart failure. In chapter 10, the present state of artificial intelligence and biosensors based on materials is briefly discussed. The underlying technologies of various invasive and non-invasive devices, and their benefits, are discussed and analyzed in Chapter 11. A discussion of the risks and issues associated with the remote monitoring system was also included in this chapter. A panel of these HF prediction devices is presented in Chapter 12 and their invasive and noninvasive alternatives. Furthermore, it advances the potential of artificial intelligence in mobile monitoring technologies to provide clinicians with improved treatment options, ultimately easing access to healthcare by all patient populations. Chapter 13 assessed the potential applications of implantable and wearable devices in HF detection application, summarizes available data for wearables, and machine learning for improving patients’ cardiac health, and discusses the future of wearables for early prediction of HF.

Predicting Heart Failure: Invasive, Non-Invasive, Machine Learning and Artificial Intelligence Based Methods provides a comprehensive but concise guide to all modern cardiological practice, emphasizing practical clinical management in many different contexts. This book provides readers with trustworthy insights into all aspects of heart failure, including essential background information on clinical practice guidelines, in-depth, peer-reviewed articles, and broad coverage of this fast-moving field. Providing the latest research data for the diagnosis and treatment of heart failure, this book is an excellent resource for nurses, nurse practitioners, physician assistants, medical students, and general practitioners to gain a better understanding of bedside cardiology.

Product Details

  • Publisher ‏ : ‎ Wiley; 1st edition (July 25, 2022)
  • Language ‏ : ‎ English
  • Hardcover ‏ : ‎ 400 pages
  • ISBN-10 ‏ : ‎ 1119813018
  • ISBN-13 ‏ : ‎ 978-1119813019
  • ISBN-13 ‏ : ‎ 9781119813019
  • eText ISBN: 9781119813040
  • eText ISBN: 9781119813026
  • eText ISBN: 9781119813033

暂无评价
暂时没有数据

交易规则

免责声明


1、本站所有分享材料(数据、资料)均为网友上传,如有侵犯您的任何权利,请您第一时间通过微信(zbook8_com) 、QQ(316821785)、 电话(13111111111)联系本站,本站将在24小时内回复您的诉求!谢谢!
2、本站所有商品,除特殊说明外,均为(电子版)Ebook,请购买分享内容前请务必注意。特殊商品有说明实物的,按照说明为准。

发货方式


1、自动:在上方保障服务中标有自动发货的宝贝,拍下后,将会自动收到来自卖家的宝贝获取(下载)链接   [个人中心->我的订单->点击订单 查看详情];
2、手动:未标有自动发货的的宝贝,拍下后,通过QQ或订单中的电话联系对方。

退款说明


1、描述:书籍描述(含标题)与实际不一致的(例:描述PDF,实际为epub、缺页少页、版本不符等);
2、链接:部分图书会给出链接,直接链接到官网或者其他站点,以便于提示,如与给出不符等;
3、发货:手动发货书籍,在卖家未发货前,已申请退款的;
4、其他:如质量方面的硬性常规问题等。
注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法对描述进行修改!

注意事项


1、在未购买下前,双方在QQ上所商定的内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准);
2、在宝贝同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外);
3、在没有"无任何正当退款依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;
4、虽然交易产生纠纷的几率很小,但请尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于网站工作人员介入快速处理。