[FOX-Ebook]Online Retail Clustering And Prediction Using Machine Learning With Python Gui, 2nd ...

[FOX-Ebook]Online Retail Clustering And Prediction Using Machine Learning With Python Gui, 2nd Edition
¥34.99 市场价 ¥899.99
库存
9999
数量
-
+
联系卖家   QQ:316821785   微信:zbook8_com  电话:13111111111   
商品特色:担保交易手动发货商品,工作人员手动发货。

自动发货宝贝:购买后直接到我买到的商品-订单详情-收货信息获取下载链接。
手动发货宝贝:购买后请留言邮箱或联系方式,0-4小时内由工作人员发到您邮箱。
购买后任何问题请联系商家或直接联系本站站务微信或者QQ。
书籍格式:
isbn:
排版:
新旧程度:

-------如果这里没有任何信息,不是真没有,是我们懒!请复制书名上amazon搜索书籍信息。-------

In this project, we embarked on a comprehensive journey of exploring the dataset and conducting analysis and predictions in the context of online retail. We began by examining the dataset and performing RFM (Recency, Frequency, Monetary Value) analysis, which allowed us to gain valuable insights into customer purchase behavior.

Using the RFM analysis results, we applied K-means clustering, a popular unsupervised machine learning algorithm, to group customers into distinct clusters based on their RFM values. This clustering approach helped us identify different customer segments within the online retail dataset.

After successfully clustering the customers, we proceeded to predict the clusters for new customer data. To achieve this, we trained various machine learning models, including logistic regression, support vector machines (SVM), K-nearest neighbors (KNN), decision trees, random forests, gradient boosting, naive Bayes, extreme gradient boosting, light gradient boosting, and multi-layer perceptron. These models were trained on the RFM features and the corresponding customer clusters.

To evaluate the performance of the trained models, we employed a range of metrics such as accuracy, recall, precision, and F1 score. Additionally, we generated classification reports to gain a comprehensive understanding of the models’ predictive capabilities.

In order to provide a user-friendly and interactive experience, we developed a graphical user interface (GUI) using PyQt. The GUI allowed users to input customer information and obtain real-time predictions of the customer clusters using the trained machine learning models. This made it convenient for users to explore and analyze the clustering results. The GUI incorporated visualizations such as decision boundaries, which provided a clear representation of how the clusters were separated based on the RFM features. These visualizations enhanced the interpretation of the clustering results and facilitated better decision-making.

To ensure the availability of the trained models for future use, we implemented model persistence by saving the trained models using the joblib library. This allowed us to load the models directly from the saved files without the need for retraining, thus saving time and resources. In addition to the real-time predictions, the GUI showcased performance evaluation metrics such as accuracy, recall, precision, and F1 score. This provided users with a comprehensive assessment of the model’s performance and helped them gauge the reliability of the predictions.

To delve deeper into the behavior and characteristics of the models, we conducted learning curve analysis, scalability analysis, and performance curve analysis. These analyses shed light on the models’ learning capabilities, their performance with varying data sizes, and their overall effectiveness in making accurate predictions. The entire process from dataset exploration to RFM analysis, clustering, model training, GUI development, and real-time predictions was carried out seamlessly, leveraging the power of Python and its machine learning libraries. This approach allowed us to gain valuable insights into customer segmentation and predictive modeling in the online retail domain.

By combining data analysis, clustering, machine learning, and GUI development, we were able to provide a comprehensive solution for online retail businesses seeking to understand their customers better and make data-driven decisions. The developed system offered an intuitive interface and accurate predictions, paving the way for enhanced customer segmentation and targeted marketing strategies. Overall, this project demonstrated the effectiveness of integrating machine learning techniques with graphical user interfaces to provide a user-friendly and interactive platform for analyzing and predicting customer clusters in the online retail industry.


暂无评价
暂时没有数据

交易规则

免责声明


1、本站所有分享材料(数据、资料)均为网友上传,如有侵犯您的任何权利,请您第一时间通过微信(zbook8_com) 、QQ(316821785)、 电话(13111111111)联系本站,本站将在24小时内回复您的诉求!谢谢!
2、本站所有商品,除特殊说明外,均为(电子版)Ebook,请购买分享内容前请务必注意。特殊商品有说明实物的,按照说明为准。

发货方式


1、自动:在上方保障服务中标有自动发货的宝贝,拍下后,将会自动收到来自卖家的宝贝获取(下载)链接   [个人中心->我的订单->点击订单 查看详情];
2、手动:未标有自动发货的的宝贝,拍下后,通过QQ或订单中的电话联系对方。

退款说明


1、描述:书籍描述(含标题)与实际不一致的(例:描述PDF,实际为epub、缺页少页、版本不符等);
2、链接:部分图书会给出链接,直接链接到官网或者其他站点,以便于提示,如与给出不符等;
3、发货:手动发货书籍,在卖家未发货前,已申请退款的;
4、其他:如质量方面的硬性常规问题等。
注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法对描述进行修改!

注意事项


1、在未购买下前,双方在QQ上所商定的内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准);
2、在宝贝同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外);
3、在没有"无任何正当退款依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;
4、虽然交易产生纠纷的几率很小,但请尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于网站工作人员介入快速处理。